An Adaptive Recurrent Network Training Algorithm Using IIR Filter Model and Lyapunov Theory

نویسنده

  • ZHIHONG MAN
چکیده

A new approach for the adaptive algorithm of a fully connected recurrent neural network (RNN) based upon the digital filter theory is proposed. Each recurrent neuron is modeled by using an infinite impulse response (IIR) filter. The weights of each layer in the RNN are updated adaptively so that the error between the desired output and the RNN output can converge to zero asymptotically. The proposed optimization method is based on the Lyapunov theory-based adaptive filtering (LAF) method [9]. The merit of this adaptive algorithm can avoid computation of the dynamic derivatives that is rather complicated in the RNN. The design is independent of the stochastic properties of the input disturbances and the stability is guaranteed by the Lyapunov stability theory. Simulation example of the nonstationary time series prediction problem is performed. The simulation results have validated the fast tracking property of the proposed method. Key-Words: Recurrent Neural Network, IIR filter, Lyapunov stability theory

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm

 A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...

متن کامل

An Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias

In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...

متن کامل

Recurrent Canonical Piecewise Linear Network and Its Application to Adaptive Equalization - Neural Networks, 1996., IEEE International Conference on

In this paper, we present a recurrent canonical piecewise linear (RCPL) network based on canonical piecewise-linear (CPL) function and autoregressive moving average model, and apply it to adaptive channel equalization. It, is shown that a recurrent neural network with piecewise linear activation function realizes an RCPL network. RCPL network has several advantages: First, i t can make use of s...

متن کامل

An Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias

In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...

متن کامل

Design of IIR Digital Filter using Modified Chaotic Orthogonal Imperialist Competitive Algorithm (RESEARCH NOTE)

There are two types of digital filters including Infinite Impulse Response (IIR) and Finite Impulse Response (FIR). IIR filters attract more attention as they can decrease the filter order significantly compared to FIR filters. Owing to multi-modal error surface, simple powerful optimization techniques should be utilized in designing IIR digital filters to avoid local minimum. Imperialist compe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002